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Abstract

I argue that hazard models are more appropriate for forecasting bankruptcy than

the single-period models used previously. Single-period bankruptcy models give bi-

ased and inconsistent probability estimates while hazard models produce consistent

estimates. I describe a simple technique for estimating a discrete-time hazard model

with a logit model estimation program.

Applying my technique, I �nd that about half of the accounting ratios that have

been used in previous models are not statistically signi�cant bankruptcy predictors.

Moreover, several market-driven variables are strongly related to bankruptcy proba-

bility, including market size, past stock returns, and the idiosyncratic standard de-

viation of stock returns. I propose a model that uses a combination of accounting

ratios and market-driven variables to produce more accurate out-of-sample forecasts

than alternative models.
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1 Introduction

Economists and accountants have been forecasting bankruptcy for decades.1 Most re-

searchers have estimated single-period classi�cation models, which I refer to as static mod-

els, with multiple-period bankruptcy data. By ignoring the fact that �rms change through

time, static models produce bankruptcy probabilities that are biased and inconsistent es-

timates of the probabilities that they approximate. Test statistics that are based on static

models give incorrect inferences. I propose a hazard model that is simple to estimate,

consistent, and accurate.

Static models are inappropriate for forecasting bankruptcy because of the nature of

bankruptcy data. Since bankruptcy occurs infrequently, forecasters use samples that span

several years to estimate their models.2 The characteristics of most �rms change from

year to year. However, static models can only consider one set of explanatory variables

for each �rm. Researchers that apply static models to bankruptcy have to select when to

observe each �rm's characteristics. Most forecasters choose to observe each bankrupt �rm's

data in the year before bankruptcy. They ignore data on healthy �rms that eventually go

bankrupt. By choosing when to observe each �rm's characteristics arbitrarily, forecasters

that use static models introduce an unnecessary selection bias into their estimates.

I develop a simple hazard model that uses all available information to determine each

�rm's bankruptcy risk at each point in time.3 While static models produce biased and

inconsistent bankruptcy probability estimates, the hazard model proposed here is consistent

in general and unbiased in some cases. Estimating hazard models with the accounting

variables used previously by Altman (1968) and Zmijewski (1984) reveals that half of these

variables are statistically unrelated to bankruptcy probability. I develop a new bankruptcy

model that uses three market-driven variables to identify failing �rms. My new model

outperforms alternative models in out-of-sample forecasts.

1See Altman (1993) for a survey of forecasting models.
2For example, Altman's (1968) original bankruptcy sample spans twenty years. The sample used in this

paper includes bankruptcies observed over 31 years.
3Hazard models are described in Kiefer (1988) and Lancaster (1990).
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1.1 Advantages of Hazard Models

Hazard models resolve the problems of static models by explicitly accounting for time. The

dependent variable in a hazard model is the time spent by a �rm in the healthy group.

When �rms leave the healthy group for some reason other than bankruptcy (e.g., merger),

they are considered censored, or no longer observed. Static models simply consider such

�rms healthy. In a hazard model, a �rm's risk for bankruptcy changes through time and

its health is a function of its latest �nancial data and its age. The bankruptcy probability

that a static model assigns to a �rm does not vary with time.

In econometric terms, there are three reasons to prefer hazard models for forecasting

bankruptcy. The �rst reason is that static models fail to control for each �rm's period at

risk. When sampling periods are long, it is important to control for the fact that some

�rms �le for bankruptcy after many years of being at risk while other �rms fail in their

�rst year. Static models do not adjust for period at risk, but hazard models adjust for it

automatically. The selection bias inherent in static bankruptcy models is a result of their

failure to correct for period at risk.

The second reason to prefer hazard models is that they incorporate time-varying co-

variates, or explanatory variables that change with time. If a �rm deteriorates before

bankruptcy, then allowing its �nancial data to reveal its changing health is important.

Hazard models exploit each �rm's time-series data by including annual observations as

time-varying covariates. Unlike static models, they can incorporate macroeconomic vari-

ables that are the same for all �rms at a given point of time. Hazard models can also

account for potential duration dependence, or the possibility that �rm age might be an

important explanatory variable.

The third reason that hazard models are preferable is that they may produce more

e�cient out-of-sample forecasts by utilizing much more data. The hazard model can be

thought of as a binary logit model that includes each �rm-year as a separate observation.

Since �rms in the sample have an average of ten years of �nancial data, approximately

ten times more data is available to estimate the hazard model than is available to estimate
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corresponding static models. This results in more precise parameter estimates and superior

forecasts.

1.2 Empirical Issues

Hazard models are preferable to static models both theoretically and empirically. Compar-

ing the out-of-sample forecasting ability of hazard models to that of Altman (1968) and

Zmijewski (1984), I �nd that hazard models perform as well as or better than alternatives.

Furthermore, hazard models often produce dramatically di�erent statistical inferences than

static models. For example, estimating hazard models reveals that about half of the ac-

counting ratios that have been used to forecast bankruptcy are not statistically related

to failure. Since previous models use independent variables with little or no explanatory

power, I search for a new set of independent variables to develop a more accurate model.

The most accurate out-of-sample forecasts that I can generate are calculated with a

hazard model that uses both market-driven and accounting variables to identify bankrupt

�rms. The market variables include market size, past stock returns, and the idiosyncratic

standard deviation of stock returns. I combine these market variables with the ratio of

net income to total assets and the ratio of total liabilities to total assets to estimate a

model that classi�es 75 percent of failing �rms in the top decile of �rms ranked annually

by bankruptcy probability.

1.3 Related Research

Precise bankruptcy forecasts are of great interest to academics, practitioners, and regula-

tors. Regulators use forecasting models to monitor the �nancial health of banks, pension

funds, and other institutions. Practitioners use default forecasts in conjunction with models

like that of Du�e and Singleton (1997) to price corporate debt. Academics use bankruptcy

forecasts to test various conjectures like the hypothesis that bankruptcy risk is priced in

stock returns (e.g. Dichev, 1997). Given the broad interest in accurate forecasts, a superior

forecasting technology is valuable.
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Most previous bankruptcy forecasting models are subject to the criticism of this paper.

The models of Altman (1968), Altman, Haldeman, and Narayanan (1977), Ohlson (1980),

Zmijewski (1984), Lau (1987) and those of several other authors are misspeci�ed. Some

authors have addressed the de�ciencies of existing bankruptcy models. Queen and Roll

(1987) and Theodossiou (1993) develop dynamic forecasting models. This paper builds

on the work of these researchers by explicitly addressing the bias in static models and

developing a consistent model.

Bankruptcy forecasters are not the only researchers that can bene�t from the results of

this paper. Forecasters of corporate mergers have also applied static models to multiple-

period data sets. In particular, the merger model of Palepu (1986) is biased and inconsistent

in the same way as the bankruptcy studies listed above. Other authors, such as Pagano,

Panetta, and Zingales (1998) and Denis, Denis, and Sarin (1997) estimate multiple-period

logit models that can be interpreted as hazard models. This paper concentrates on the

bankruptcy forecasting literature because it includes some of the most obvious misapplica-

tions of single-period models, but the results reported here are relevant for other areas of

empirical �nance as well.

2 Hazard versus Static Models

It is important to specify exactly what sort of bankruptcy data is available before discussing

alternative models. For simplicity, I assume that bankruptcy can only occur at discrete

points in time, t = 1; 2; 3; :::. Most bankruptcy samples contain data on n �rms that all

existed for some time between t = 1 and t = T . Each �rm either fails during the sample

period, survives the sample period, or it leaves the sample for some other reason such as a

merger or a liquidation. De�ne a \failure" time, ti, for each �rm (indexed by i) as the time

when the �rm leaves the sample for any reason. Let a dummy variable, yi, equal one if �rm

i failed at ti and let it equal zero otherwise, and let the probability mass function of failure

be given by f(t; x; �), where � represents the vector of parameters of f and x represents a
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vector of explanatory variables used to forecast failure.

2.1 Similarities Between Hazard and Static Models

To facilitate comparison between static and hazard models, only maximum likelihood mod-

els are discussed in this section. The static models considered here have likelihood functions

of the form

L =
nY
i=1

F (ti; xi; �)
yi[1� F (ti; xi; �)]

1�yi ; (1)

where F is the cumulative density function (CDF) that corresponds to f(t; x; �). While

there are a number of models with likelihood functions of this form, I refer to all models

that pertain to this family as logit models for simplicity.

Describing hazard models requires a few more de�nitions. Following hazard model

conventions, the survivor function, S(t; x; �), and the hazard function, �(t; x; �), are de�ned

as

S(t; x; �) = 1�
X
j<t

f(j; x; �); �(t; x; �) =
f(t; x; �)

S(t; x; �)
: (2)

The survivor function gives the probability of surviving up to time t and the hazard function

gives the probability of failure at t conditional on surviving to t. The hazard model's

likelihood function is:

L =
nY
i=1

�(ti; xi; �)
yiS(ti; xi; �): (3)

A parametric form for the hazard function, �(ti; xi; �), is often assumed. The model can

incorporate time-varying covariates by making x depend on time.

Hazard and static models are closely related. To make the relation between the models

clear, I de�ne a multiperiod logit model as a logit model that is estimated with data on

each �rm in each year of its existence as if each �rm-year were an independent observation.

The dependent variable in a multiperiod logit model is set equal to one only in the year in

which a bankruptcy �ling occurred. The following proposition illustrates the link between

hazard and multiperiod logit models.
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Proposition 1. A multiperiod logit model is equivalent to a discrete-time hazard model

with hazard function F (t; x; �).

Proof:

Since a multiperiod logit model is estimated with the data from each �rm-year as if it

were a separate observation, its likelihood function is

L =
nY
i=1

0
@F (ti; xi; �)yi Y

j<ti

[1� F (j; xi; �)]

1
A : (4)

As a CDF, F is strictly positive and bounded by one. Since F depends on t and it is

positive and bounded, it can be interpreted as a hazard function. Replacing F with the

hazard function �,

L =
nY
i=1

0
@�(ti; xi; �)yi Y

j<ti

[1� �(j; xi; �)]

1
A : (5)

Finally, Cox and Oakes (1984) show that the survivor function for a discrete-time hazard

model satis�es

S(t; x; �) =
Y
j<t

[1� �(j; x; �)]: (6)

Substituting equation (6) into (5) demonstrates that the likelihood function of a multiperid

logit model is equalivant to the likelihood function of a discrete-time hazard model, (3),

with hazard rate �(t; x; �) = F (t; x; �). 2

2.2 Econometric Properties of Hazard and Static Models

Given the relationship between hazard and static models explained above, it is possible to

see both the source and the e�ect of the selection bias in previous bankruptcy forecasting

models. This section illustrates the bias with a simple example. It also presents a fairly

general argument for the inconsistency of static models and the consistency of hazard

models. Finally, it discusses problems of statistical inference and e�ciency inherent in

static models.
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2.2.1 Consistency: A Simple Example

Suppose that there are two periods in which bankruptcy is possible. A dummy variable,

yit, is set to one if �rm i goes bankrupt in period t. In each period, each �rm has a

nonstochastic covariate, xit, which only takes on values of zero or one. The covariate is

related to the �rm's bankruptcy probability by

Prob(yit = 1) = �xit: (7)

There are N �rms for which both yit and xit are observable in period one. In period two,

only �rms that did not go bankrupt in period one are observable. Each �rm's observation is

assumed to be independently and identically distributed (i.i.d.). The problem is to estimate

� given the available data.

Consider �rst the hazard model estimator for �. The model of bankruptcy assumed

above stipulates that a �rm's risk is independent of its age. The discrete-time hazard

model described by Proposition 1 has a hazard rate equal to the CDF of y. Thus, the

hazard function for this problem is equal to the probability of bankruptcy (� = F = �xit),

and the (log) likelihood function for the model is

LH = ln

(
NY
i=1

(�Hxi1)
yi1

h
(1� �Hxi1)(�Hxi2)

yi2(1� �Hxi2)
(1�yi2)

i(1�yi1))
: (8)

The terms involving values in period two are raised to the power (1� yi1) because they are

only observed when the �rm does not go bankrupt in period one.

The �rst order condition for the maximization of this likelihood function is

@LH

@�̂H
=

NX
i=1

(
yi1

�̂H
+ (1� yi1)

"
�xi1

(1� �̂Hxi1)
+

yi2

�̂H
�

(1� yi2)xi2

(1� �̂Hxi2)

#)
= 0: (9)

Using the fact that both xit and yit can only take values of zero or one, this expression can
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be simpli�ed to

NX
i=1

yi1 + (1� yi1)yi2

�̂H
=

NX
i=1

(1� yi1)xi1 + (1� yi1)(1� yi2)xi2

(1� �̂H)
; (10)

which leads to the maximum likelihood estimator,

�̂H =

P
N

i=1 (yi1 + (1� yi1)yi2)P
N

i=1 (yi1 + (1� yi1)yi2 + (1� yi1)xi1 + (1� yi1)(1� yi2)xi2)
: (11)

Since �rms with xit = 0 have no probability of failure and �rms with yi1 = 1 are not

observed in period two, this can be simpli�ed to

�̂H =

P
N

i=1(yi1 + yi2)P
N

i=1(xi1 + xi2)
: (12)

Notice that this is a natural estimate of bankruptcy probability. The numerator is equal

to the total number of failures observed while the denominator is the total number of �rms

at risk of failure in both periods. Furthermore, since E(yit) = �xit, �̂H is unbiased for �.

Under the i.i.d. assumption made above, �̂H is also consistent for � by the law of large

numbers.

Now consider the static estimator in the same problem. This estimator takes only one

input from each �rm. Firms that go bankrupt in period one are recorded at bankruptcy,

and all other �rms are recorded in period two. The (misspeci�ed) likelihood function for

this estimator is

LS = ln

(
NY
i=1

(�Sxi1)
yi1

h
(�Sxi2)

yi2(1� �Sxi2)
(1�yi2)

i(1�yi1))
: (13)

with the �rst order condition,

@LS

@�̂S
=

NX
i=1

 
yi1

�̂S
+ (1� yi1)

"
yi2

�̂S
�

(1� yi2)xi2

(1� �̂Sxi2)

#!
= 0: (14)

Comparing (14) to (9) reveals that the static estimator's �rst order condition is missing the
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yi2

�̂
term that is in equation (9). Otherwise, the conditions are identical. Using arguments

similar to those above, the static model's maximum likelihood condition can be restated

as,
NX
i=1

yi1 + (1� yi1)yi2

�̂S
=

NX
i=1

(1� yi1)(1� yi2)xi2

1� �̂S
; (15)

which produces,

�̂S =

P
N

i=1(yi1 + yi2)P
N

i=1(yi1 + xi2)
: (16)

This static estimator equals the total number of failures divided by the number of failures

in period one plus the number of �rms at risk of failure in period two. It neglects to

consider �rms at risk of bankruptcy in period one. Thus, it produces biased and inconsistent

estimates. The bias in this estimator can be written as

E[�̂S]� � = E

(P
N

i=1(yi1 + yi2)
P

N

i=1(xi1 � yi1)P
N

i=1(xi1 + xi2)
P

N

i=1(yi1 + xi2)

)
: (17)

Since the denominator in (17) is always positive and the expected value of the numerator

is positive, the bias in the static model's estimator is positive. This is consistent with what

intuition suggests. The static model's estimates of � are too large because they neglect to

consider �rms that don't go bankrupt even though they are at risk.

This simple example ignores many common complications. It assumes a simple struc-

ture and just two periods. In the next subsection, the consistency of more general static

estimators is explored.

2.2.2 Consistency: The More General Case

The simple example developed above is easily generalized. Before presenting the general

argument, three important assumptions must be explained.

Assumption 1. The static model is correctly speci�ed for one period.
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In particular, the period-� likelihood function,

L� (�) =
NX
i=1

fyi� ln[P(yi� = 1jxi� ; �)] + (1� yi� ) ln[1� P(yi� = 1jxi� ; �)]g ; (18)

satis�es all the assumptions that are usually made in order to prove that �̂ is consistent for

� (Amemiya, 1985). One of the consistency assumptions made about (18) is that L� (�)=N

converges in probability uniformly (as N !1) to a nonstochastic function, Q� (�), which

attains a unique global maximum at the true value of �.

Assumption 2. Q� (�) can be represented as the sum Q�1(�) + Q�2(�), where Q�1(�) is

the limit of 1

N

P
N

i=1 yi� ln[P(yi� = 1jxi� ; �)] and Q�2(�) is the limit of 1

N

P
N

i=1(1� yi� ) ln[1�

P(yi� = 1jxi� ; �)]:

This assumption is fairly innocuous, but it makes the argument for consistency simple.

With Assumptions 1 and 2, the true value of � maximizes the function Q� (�) = Q�1(�) +

Q�2(�) for any single time period, � .

Assumption 3. The log likelihood function for each period is su�ciently well speci�ed to

satisfy the independence property,

L(�jyi� ; yi�+k; xi� ; xi�+k) = L� (�jyi� ; xi� ) + L�+k(�jyi�+k; xi�+k);

for any k.

Assumption 3 is a conditional independence condition that is analogous to the common

econometric assumption that the model is su�ciently well speci�ed to guarantee that the

error terms of di�erent observations are independent of each other. This assumption will

be violated when some unobserved heterogeneity among �rms is correlated with failure.

Econometricians have developed a number of models that correct this problem (Lancaster,

1990). Rather than complicate the current model with assumptions about unobserved

heterogeneity, I assume that all heterogeneity among �rms is captured by the variables

used to forecast failure, xit.
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With these three assumptions, it is easy to show that hazard models are consistent.

Proposition 2. Under Assumptions 1-3, a discrete-time hazard model estimator is con-

sistent for �, but a simple static model estimator is generally inconsistent.

Proof:

Consider the joint log likelihood function for yi1; yi2; : : : ; yiT ,

L1;T (�) = L1 + L2 + : : :+ LT (19)

This is exactly the likelihood function that the hazard model maximizes. Under Assump-

tions 1 through 3, maximizing this joint likelihood function produces a consistent estimator

for �:

By contrast, consider the objective function of the static estimator in this general frame-

work. In both periods one and two,

� = arg max� Q11(�) +Q12(�)

� = arg max� Q21(�) +Q22(�):
(20)

Adding periods one and two together, it must be true that

� = arg max
�

Q11(�) +Q12(�) +Q21(�) +Q22(�): (21)

However, as long as Q12(�) is not equal to a constant, the true value of � will not maximize

the function,

� 6= arg max
�

QS(�) = Q11(�) +Q21(�) +Q22(�); (22)

but this is exactly what the likelihood function of the static model converges to for this

two-period problem. Thus, for this problem, the static model's estimate of � is generally

inconsistent for the true value of �.
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A more general representation of the objective function of the static estimator is

GS;1;T =
P

N

i=1 yi1 ln[P(yi1 = 1jxi1; �)] + yi2 ln[P(yi2 = 1jxi2; �)] + : : :

+yiT ln[P(yiT = 1jxiT ; �)] + (1� yiT ) ln[1� P(yiT = 1jxiT ; �)]:
(23)

Under Assumptions 1 through 3, the function GS;1;T=N converges in probability uniformly

to a form similar to (22). Since the true value of � does not maximize the limitting function

of (23), static estimators are not consistent in general. 2

2.3 Inference and E�ciency

Since the parameter estimates produced by static models are biased and inconsistent, tests

of statistical signi�cance performed with static models are invalid. Thus, it is not clear

that the variables associated with bankruptcy by static models are signi�cant predictors.

This issue is explored in detail in the empirical work below.

The connection between the hazard and logit models implies that even if static models

were consistent, hazard models should be more accurate. While each �rm has a time-series

of annual observations, static models are estimated only with each �rm's last observation.

Hazard models take advantage of much more data. They are equivalent to logit models in

which no �rm-year data points have been excluded. Unlike static models, hazard models

exploit all of the data available. Thus, for both consistency and e�ciency, hazard models

are preferable to static models.

3 Estimating the Hazard Function

The previous section shows that hazard models are superior to static models for forecasting

bankruptcy. In practice, however, many hazard models are di�cult to estimate because

of their nonlinear likelihood functions and time-varying covariates. Proposition 1 implies

that it is possible to estimate discrete-time hazard models with a computer program that

estimates logit models. To estimate a hazard model with a logit program, each year in
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which the �rm survives is included in the logit program's \sample" as a �rm that did not

fail. Each bankrupt �rm contributes only one failure observation (yit = 1) to the logit

model. Time-varying covariates are incorporated simply by using each �rm's annual data

for its �rm-year logit observations. Estimating hazard models with a logit program is so

simple and intuitive that it has been done by academics and regulators without a hazard

model justi�cation.4

Making statistical inferences in a hazard model estimated with a logit program is sim-

ple. Since the logit and hazard models have the same likelihood function, they have the

same asymptotic variance-covariance matrix (Amemiya, 1985). However, the test statis-

tics produced by a logit program are incorrect for the hazard model because they assume

that the number of independent observations used to estimate the model is the number of

�rm-years in the data. Calculating correct test statistics requires adjusting the sample size

assumed by the logit program to account for the lack of independence between �rm-year

observations.5 For the hazard model, each �rm's entire life span is one observation. Thus,

the correct value of n for test statistics is the number of �rms in the data, not the number

of �rm-years. The �2 test statistics produced by logit programs are of the form

1

n
(�̂k � �0)

0

��1(�̂k � �0) � �2(k); (24)

where there are k estimated moments being tested against k null hypotheses, �0. Dividing

these test statistics by the average number of �rm-years per �rm makes the logit program's

statistics correct for the hazard model. Unreported estimates of a proportional hazard

model con�rm that standard hazard models produce coe�cient estimates and test statistics

that are similar to those produced by the discrete-time hazard model described here.

Logit models in which several observations exist for each individual usually account

4Pagano, Panetta, and Zingales (1995) and Denis, Denis and Sarin (1997) use models like the hazard

model described here to forecast initial public o�erings and executive turnover. The Pension Bene�ts

Guarantee Corporation forecasts bankruptcies by estimating a logit model by �rm-year.
5The �rm-year observations of a particular �rm cannot be independent, since a �rm cannot fail in period

t if it failed in period t� 1.
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for the lack of independence between observations that is characteristic of panel data

(Amemiya, 1985). The logit model used here is already penalized for the lack of inde-

pendence between �rm-year observations by the sample size adjustment described above.

Since it does not assume that �rm-year observations are i.i.d., no more adjustment for

dependence should be necessary.

Interpreting the logit model as a hazard model can clarify the meaning of the model's

coe�cients. Partitioning � into �1 and �2, the hazard function for the discrete-time hazard

model can be written as

�(t; x; �1; �2) =
1

1 + Exp(g(t)0

�1 + x
0

�2)
: (25)

If the function of �rm age selected, g(t), is the natural logarithm of age then the haz-

ard model is an accelerated failure-time model (see Lancaster, 1990). Coe�cients can be

interpreted with the regression equation,

E[ln(t)jx] = �
x

0

�2

�1
: (26)

Alternatively, omitting �rm age variables from the model is analogous to estimating an

exponential hazard model in which a �rm's probability of failure does not depend on its

age. In general, any function of age can be included in the model. This makes the discrete-

time hazard model more 
exible than many common parametric models.

4 The Data

To compare hazard to static model forecasts, I estimate both hazard and static models

and examine their out-of-sample accuracy. Only �rms in the intersection of the Compustat

Industrial File and the CRSP Daily Stock Return File for NYSE and AMEX stocks are

included in the sample. Firms that began trading before 1962 or after 1992 are excluded.

Firms with CRSP SIC codes from 6000 to 6999 (�nancial �rms) are also excluded. Table
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I provides summary statistics for all of the independent variables described below.

4.1 Bankruptcy Data

I collected bankruptcy data from the Wall Street Journal Index, the Capital Changes Re-

porter, and the Compustat Research File. I also searched for �rms whose stock was delisted

from the NYSE or AMEX in the Directory of Obsolete Securities (1993) and Nexis. All

�rms that �led for any type of bankruptcy within �ve years of delisting are considered

bankrupt. The �nal sample contains 300 bankruptcies between 1962 and 1992.

The variable of interest in the hazard model is �rm age. In this paper, a �rm's age is

de�ned as the number of calendar years it has been traded on the NYSE or AMEX. So,

for example, if a �rm began trading on the NYSE in 1964 and then merged in 1965, it

would contribute two �rm-year observations to the logit model. One observation would

give the �rm's age as one year and the other would indicate that the �rm's age was two

years. The dependent variable associated with both of these observations would be equal

to zero, indicating no bankruptcy occurred. If the �rm �led for bankruptcy, only its second

�rm-year observation would have a dependent variable value of one.

I use the �rm's trading age as the variable to be explained because there is no attractive

alternative to measure how long the �rm has been a viable enterprise. Since a �rm must

meet a number of requirements to be listed by an exchange, �rms are fairly homogeneous

when initially listed. However, a �rm can be incorporated as a small speculative concern

or as a large holding company, making the �rm's age since incorporation less economically

meaningful than its age since listing. In the hazard models I estimate, �rm age is never

statistically signi�cant after controlling for other �rm characteristics.

4.2 Independent Variables

I estimate models with several di�erent sets of independent variables. The forecasting

models incorporate Altman's (1968) and Zmijewski's (1984) independent variables, as well

as some new market-driven independent variables described in this section.
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Altman's variables are described extensively in Altman (1993). They include the ratios

of working capital to total assets (WC/TA), retained earnings to TA (RE/TA), earnings

before interest and taxes to TA (EBIT/TA), market equity to total liabilities (ME/TL), and

sales to TA (S/TA). The COMPUSTAT item numbers that I used to construct Altman's

variables appear with the variables' summary statistics in Table I.

In order to make my forecasting exercise realistic, I lag all data to ensure that the data

are observable in the beginning of the year in which bankruptcy is observed. To construct

Altman's (and Zmijewski's) variables, I lag COMPUSTAT data to ensure that each �rm's

�scal year ends at least six months before the beginning of the year of interest. I lag the

market-driven variables described below in a similar fashion.

There are a number of extreme values among the observations of Altman's ratios con-

structed from raw COMPUSTAT data. To ensure that statistical results are not heavily

in
uenced by outliers, I set all observations higher than the 99th percentile of each variable

to that value. All values lower than the �rst percentile of each variable are truncated in the

same manner. Zmijewski's variables and the market-driven variables I introduce below are

also truncated to avoid outliers. Unreported results with untruncated data are generally

similar to the results I report. The minimum and maximum numbers reported in Table I

are calculated after truncation.

Zmijewski's variables include the ratio of net income to total assets (NI/TA), the ratio

of total liabilities to TA (TL/TA), and the ratio of current assets to current liabilities

(CA/CL). As with Altman's variables, the COMPUSTAT item numbers used to construct

each of these variables appears in Table I. The data are lagged and truncated as described

above.

Because the market equity of �rms that are close to bankruptcy is typically discounted

by traders, �rm size is a very important bankruptcy predicting variable. Each �rm's market

capitalization is measured at the end of the year before the observation year. To make size

stationary, the logarithm of each �rm's size relative to the total size of the NYSE and

AMEX market is used. These data are all readily available in the CRSP database. The
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average of relative size is negative because it is the logarithm of a generally small fraction.

If traders discount the equity of �rms that are close to bankruptcy then a �rm's past

excess returns should predict bankruptcy as well as its market capitalization. I measure

each �rm's past excess return in year t as the return of the �rm in year t � 1 minus the

value-weighted CRSP NYSE/AMEX index return in year t�1. Each �rm's annual returns

are calculated by cumulating monthly returns. When some of a �rm's monthly returns

are missing, the value-weighted CRSP NYSE/AMEX index return is substituted for the

missing returns. The average excess return reported in Table I is a small positive number

because equal-weighted returns are typically higher than value-weighted returns.

The last market-driven variable that I use is the idiosyncratic standard deviation of

each �rm's stock returns, denoted sigma in the tables below. Sigma is strongly related to

bankruptcy both statistically and logically. If a �rm has more variable cash 
ows (and

hence more variable stock returns) then the �rm ought to have a higher probability of

bankruptcy. Sigma may also measure something like operating leverage. I calculate each

�rm's sigma for year t by regressing each stock's monthly returns in year t�1 on the value-

weighted NYSE/AMEX index return for the same year. Sigma is the standard deviation

of the residual of this regression. I drop values calculated with regressions based on less

than twelve months of returns. To avoid outliers, relative size, past returns, and sigma

are all truncated at the 99th and 1st percentile values in the same manner as all other

independent variables.

Since a complete set of explanatory variables is not always observable for each �rm-year,

I substitute variable values from past years for missing values in some cases. This does not

present an econometric problem because, for example, accounting ratios observed in year

t are still observable in years t + 1 and t + 2. By �lling in missing data, the number of

�rm-years available to estimate Altman's model rises from 27,665 to 28,226. The number

of bankruptcies available to identify rises from 201 to 229.
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5 Forecasting Results

In this section, I report parameter estimates for various forecasting models and I compare

the out-of-sample accuracy of all the models considered. Unreported estimates of analogous

proportional hazard models are approximately proportional to the estimates reported.

5.1 Models with Altman's Variables

Table II reports the results of estimating models with Altman's variables. Panel A displays

Altman's original discriminant function,6 a new set of coe�cients calculated by Begley,

Ming, and Watts (1996)7 and two functions calculated with my bankruptcy data. The

coe�cients in the third line of the table (1962-1983 data) are calculated only with data

available in 1983. Those data consist of 1822 �rms that have complete data for at least one

year between 1962 and 1983, 118 of which �led for bankruptcy by 1983. The discriminant

analysis (DA) calculations use either the last data reported (at least six months) before

bankruptcy or the last data available in 1983 for each �rm in the sample. Forecasts based

on this function are compared to hazard model forecasts formed with data available in 1983

in Table III. The �fth line in Panel A (1962-1992 data) reports DA coe�cients calculated

with data available in 1992. Again, the calculations use only the last available set of data

for each �rm. Panel B reports hazard model coe�cients for the same variables. The

hazard model estimates are based on all available data (each �rm-year) from 1962 to 1992.

In unreported results with untruncated data, ME/TL loses its signi�cance in the hazard

model but the results are otherwise quite similar to those reported.

Both the hazard model and the DA coe�cients con�rm that �rms with higher earnings

relative to assets are less likely to fail. Larger �rms with less liabilities and �rms with

higher working capital are also relatively safe. The e�ects of retained earnings and sales

vary from model to model. The log of �rm age is not statistically signi�cant in the hazard

6Altman (1993) discusses the interpretation of discriminant analysis coe�cients extensively.
7The published version of Begley, Ming, and Watts (1996) contains two typographical errors. The

coe�cients reported in Table II are correct.
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model and its coe�cient is quite small. There appears to be little duration dependence in

bankruptcy probability.

The T-statistics reported in panel A are tests of the di�erences in the means of bankrupt

and healthy �rms. They indicate that all of Altman's variables are strong bankruptcy pre-

dictors. Performing the same test, Altman (1993) �nds that all of his variables except

S/TA are statistically signi�cant predictors. Unfortunately, since the samples of healthy

and bankrupt �rms are not chosen randomly, the T-statistics of Panel A are biased and

inconsistent. According to the hazard model, the only statistically signi�cant variables

are EBIT/TA and ME/TL. The discrepancy between these two �ndings is due to the bias

inherent in Altman's method. As �rms approach bankruptcy, their �nancial condition dete-

riorates. Altman's model drops observations on �rms that will be bankrupt in two or three

years. It neglects, for example, �rms that have low values of WC/TA in a particular year,

which go bankrupt the following year. Omitting such observations in
ates test statistics.

Table III compares the out-of-sample accuracy of the models described above. To

construct the table, I sort all �rms each year from 1984 to 1992 into deciles based on

their �tted probability values. Fitted probabilities (or rankings) are created by combining

the coe�cients from models estimated with 1983 data with the data available in each

subsequent year. The table reports the percentage of bankrupt �rms that are classi�ed

into each of the �ve highest probability deciles in the year in which they failed. It also lists

the percentage of bankrupt �rms classi�ed among the least likely �fty percent of �rms to

fail. There are 111 bankrupt �rms that have the accounting data required to evaluate the

discriminant function between 1984 and 1992. Again, results with untruncated data are

very similar to those in Table III.

By a reasonable margin, the most accurate model listed in Table III is the hazard

model. The hazard model classi�es almost seventy percent of all bankruptcies in the highest

bankruptcy probability decile. It classi�es 96.6 percent of bankrupt �rms above the median

probability. The discriminant analysis models cannot match this accuracy.
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5.2 Models with Zmijewski's Variables

Table IV reports the results of estimating three models with Zmijewski's (1984) variables.

Panel A reports Zmijewski's original estimates as well as estimates of Zmijeski's model

calculated with my data. The second line reports the coe�cients for Zmijewski's model

estimated with data available in 1983 while the fourth line lists coe�cients using data from

1962 to 1992. As with Altman's model, all of these estimates are calculated by observing

only each �rm's last available set of accounting data, and the test statistics reported on

lines three and �ve are biased and inconsistent. The hazard model in Panel B exploits the

entire time-series of accounting data available from 1962 to 1992.

The coe�cients for Zmijewski's model are remarkably similar across models. Even the

hazard model's estimated coe�cients are close to the coe�cients of the simple logit models

in Panel A. As expected, �rms with high income and low liabilities are less likely to fail

than other �rms. The current ratio (CA/CL) is not signi�cantly related to bankruptcy in

any of the estimates. Zmijewski also reports that CA/CL is not statistically signi�cant in

his model. The log of �rm age is insigni�cant in the hazard model, con�rming that there

is little or no duration dependence in bankruptcy data.

While the coe�cients are quite similar, the test statistics associated with each model are

quite di�erent. As in the case of discriminant analysis, Zmijewski's model appears to vastly

overstate the statistical signi�cance of the parameters. While according to Zmijewski's

model both NI/TA and TL/TA are excellent bankruptcy predictors, according to the hazard

model only the coe�cient on NI/TA is signi�cantly di�erent from zero at the 99% level.

This fact, combined with the fact that TL/TA and NI/TA are strongly correlated (� =

0.40), suggests that Zmijewski's model is essentially a one-variable model.

Curiously, when the data are not truncated, the sample correlation between NI/TA

and TL/TA is -0.98. Neither NI/TA nor TL/TA are signi�cant in the (unreported) haz-

ard model with untruncated data, and the hazard model's forecasting accuracy is poor.

Truncating the data to control for outliers is important for Zmijewski's model.

Table V compares the accuracy of logit and hazard estimates of Zmijewski's model.
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Like Table III, Table V examines how many bankruptcies between 1984 and 1992 can be

identi�ed with the �tted values of a model estimated with data available before 1984. It

also examines the accuracy of a simple ranking of �rms by their ratio of net income to

total assets. Unlike Table III, Table V does not report that the hazard model dominates

alternative models. The hazard model does not even perform better than the NI/TA sort.

Each of the models appears fairly accurate, assigning between 54% and 56% of bankrupt

�rms to the highest bankruptcy probability decile. However, none of the three models

appears to add much explanatory power to NI/TA. This is not surprising, given that each

of these models only includes one strong bankruptcy predictor. Thus, while it is a little

disappointing that the hazard model does not outperform the logit model, it is not possible

for one (monotonic) model to outperform another model if both are based on only one

important bankruptcy predictor.

None of the forecasts made with Zmijewski's model are as successfull as the hazard

model that uses Altman's variables in Table III. Still, the variables in these two models

measure similar things. Both EBIT/TA and NI/TA measure the pro�tability of the �rm,

while both ME/TL and TL/TA measure the �rm's leverage. A critical di�erence between

Altman's and Zmijewski's variables is that Altman's ME/TL contains a value determined in

equilibrium by market traders rather than by accounting conventions. In an e�ort to build

bankruptcy models with more power, two models that incorporate other market-driven

variables are described in the next section.

5.3 Models with Market-Driven Variables

Parameter estimates for two hazard models that include market-driven variables appear

in Table VI. The model reported in Panel A forecasts bankruptcies with market-driven

variables exclusively while the model in Panel B combines market-driven variables with

two accounting ratios from Zmijewski's model. Because there is no evidence of duration

dependence in bankruptcy probability, neither model contains the log of �rm age as an

explanatory variable. Both models are estimated with all data (each �rm-year) from 1962
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to 1992. An important advantage of the model that is based solely on market-driven

variables is that �rms without COMPUSTAT data can remain in the model's sample.

The model in Panel A is estimated with 33,621 �rm-years and 291 bankruptcies, while the

model in panel B is estimated with only 28,664 �rm-years and 239 bankruptcies. Estimates

calculated with untruncated data are quite similar to those reported.

All of the coe�cients in both models have the expected signs. Larger, less volatile �rms

with high past returns are safer than small, volatile �rms with low past returns. High net

income and low liabilities are again associated with low risk. While all three of the market-

driven variables are statistically signi�cant in Panel A, both NI/TA and sigma become

insigni�cant when market variables and accounting ratios are combined in Panel B.

The accuracy of these models is examined in Table VII. As in Tables III and V, �rms

are sorted annually based on their implied bankruptcy probability, formed by combining

parameter estimates based on 1983 data with the data available after 1983. The number of

bankruptcies occuring bewteen 1984 and 1992 in each probability decile is reported. Com-

bining accounting and market variables results in the most accurate model documented in

this paper. This model classi�es three-quarters of bankrupt �rms in the highest bankruptcy

decile, and it only classi�es 3.5 percent of bankrupt �rms below the bankruptcy probabil-

ity median. The model based solely on market-driven variables performs quite well also,

classifying 69 percent of bankrupt �rms in the highest probability decile and 95 percent

of bankrupt �rms above the probability median. Bankruptcy forecasts can be improved

dramatically by conditioning on market-driven variables.

6 Conclusion

This paper develops a hazard model for forecasting bankruptcy. The hazard model is

theoretically preferable to the static models used previously because it corrects for period

at risk and allows for time-varying covariates. It uses all available information to produce

bankruptcy probability estimates for all �rms at each point in time. By using all the
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available data, it avoids the selection biases inherent in static models.

The hazard model is simple to estimate and interpret. A logit estimation program can

be used to calculate maximum likelihood estimates. Test statistics for the hazard model

can be derived from the statistics reported by the logit program. The hazard model can

be interpreted either as a logit model done by �rm-year or it can be viewed as a discrete

accelerated failure-time model.

Estimating the hazard model with a set of bankruptcies observed over thirty-one years,

I �nd that while half of the accounting ratios used previously are poor predictors, several

previously neglected market-driven variables are strongly related to bankruptcy probability.

A �rm's market size, its past stock returns, and the idiosyncratic standard deviation of

its stock returns all forecast failure. Combining these market-driven variables with two

accounting ratios, I estimate a model that is quite accurate in out-of-sample tests.
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Table I
Summmary Statistics

Table I reports summary statistics for all of the variables used to forecast bankruptcy. Each
observation represents a particular �rm in a particular year. The column labeled COMP
lists the Compustat variable numbers used to construct the variables that are taken from
Compustat. The column labeled Source indicates whether the variable in question has been
used by previous researchers, with Alt indicating that the variable was used by Altman
(1968) Zmi indicating that the variable was used by Zmijewski (1984) and Shu indicating
that the variable is new to this paper. In the entire sample, there are 300 bankruptcies
among 3182 �rms and 39745 �rm-years. The sample period is from 1962 to 1992. All
variables are truncated at the 99th and 1st percentile, so the Minimum and Maximum
quantities reported are actually those quantiles.

Variable COMP Source Mean Median Std. Minimum Maximum

WC/TA 179/6 Alt 0.289 0.300 0.200 -0.165 0.736
RE/TA 36/6 Alt 0.255 0.264 0.256 -0.912 0.781
EBIT/TA 178/6 Alt 0.105 0.104 0.096 -0.225 0.386
ME/TL ME/181 Alt 2.799 1.223 4.717 0.034 31.893
S/TA 12/6 Alt 1.493 1.361 0.921 0.141 5.475
NI/TA 172/6 Zmi 0.048 0.054 0.079 -0.329 0.231
TL/TA 181/6 Zmi 0.507 0.512 0.192 0.090 1.028
CA/CL 4/5 Zmi 2.439 2.108 1.460 0.447 9.214
Default Spread NA Shu 2.251 2.170 0.827 0.590 3.860
Sigma NA Shu 0.110 0.097 0.055 0.030 0.325
rit�1 � rmt�1 NA Shu 0.057 -0.029 0.511 -0.817 2.181
Relative Size NA Shu -10.076 -10.146 1.638 -13.616 -6.115
Ln(Age) NA Shu 1.937 2.079 0.920 0.000 3.434
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Table II
Forecasting Bankruptcy with Altman's Variables

Table II presents parameter estimates for models that employ Altman's (1968) forecasting
variables. Panel A reports discriminant analysis coe�cients and Panel B reports hazard
model estimates. While the DA calculations reported in Panel A use only each �rm's last
available set of accounting ratios, the hazard model estimates in Panel B exploit all of the
data available from 1962 to 1992. The 1962-1983 data consist of 1822 �rms with complete
data in or before 1983. 118 of the 1822 �rms �led for bankruptcy by 1983.

Panel A: Discriminant Analysis Coe�cients

Coe�cients WC/TA RE/TA EBIT/TA ME/TL S/TA

Altman (1968) 1.2 1.4 3.3 0.6 1.00
BMW (1996)a 10.4 1.0 10.6 0.3 -0.17
1962-1983 data 0.4 2.8 11.1 0.01 -0.35
T-Statistics� (-5.66) (-11.96) (-13.92) (-5.93) (2.12)
1962-1992 data 1.2 0.6 10.0 0.05 -0.47
T-Statistics� (-7.38) (-11.59) (-7.21) (-3.41) (10.53)

�These t-statistics are inconsistent because of selection bias.

Panel B: Hazard Model Estimates

Variable Coe�cient �2 P-Value

Intercept -3.226 11.86 0.000
WC/TA -0.732 0.31 0.577
RE/TA -0.818 1.02 0.312
EBIT/TA -8.946 13.32 0.000
ME/TL -1.712 6.25 0.012
S/TA 0.158 0.58 0.446
Ln(age) 0.015 0.00 0.967

2496 �rms, 28226 �rm-years, 229 failures

aNote that the published version of Begley, Ming, and Watts (1997) contains two typo-
graphical errors. The coe�cients reported above are correct.
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Table III
Forecast Accuracy with Altman's Variables

Table III presents a comparison of the out-of-sample accuracy of various bankruptcy
models. All of the models use the independent variables identi�ed by Altman (1968), and
all of the models are estimated with data available between 1962 and 1983. Parameter
estimates calculated with 1983 data are combined with annual data between 1984 and
1992 to forecast bankruptcies occurring between 1984 and 1992.

Probability Rankings versus Actual Bankruptcies
Percent Classi�ed out of 111 Possible

Decile Altman BMW New DA Hazard

1 42.3 52.3 60.4 67.6
2 12.6 11.7 11.7 15.3
3 12.6 8.1 8.1 3.6
4 9.0 6.3 8.1 3.6
5 8.1 5.4 4.5 3.6

6-10 15.4 16.2 7.2 6.3
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Table IV
Forecasting Bankruptcy with Zmijewski's Variables

Table IV presents parameter estimates for models that employ Zmijewski's (1984) forecast-
ing variables. Panel A reports simple logit analysis coe�cients and Panel B reports hazard
model estimates. While the logit estimates reported in Panel A are calculated with only
each �rm's last available set of accounting ratios, the hazard model estimates in Panel B
exploit all of the data available from 1962 to 1992. The 1962-1983 data consist of 1897
�rms with complete data in or before 1983. 130 of the 1897 �rms �led for bankruptcy by
1983.

Panel A: Simple Logit Model Coe�cients

Coe�cients Intercept NI/TA TL/TA CA/CL

Zmijewski (1984) -4.336 -4.513 5.679 0.004
1962-1983 data -5.112 -5.222 4.579 -0.166
�2 test statistic� (57.1) (25.2) (34.1) (1.52)
1962-1992 data -4.201 -4.701 3.106 -0.119
�2 test statistic� (110.3) (62.5) (47.9) (2.03)

�These test statistics are inconsistent because of selection bias.

Panel B: Hazard Model Estimates

Variable Coe�cient �2 P-Value

Intercept -7.811 25.08 0.000
NI/TA -6.307 10.80 0.001
TL/TA 4.068 6.53 0.011
CA/CL -0.158 0.28 0.599
Ln(age) 0.307 1.11 0.292

2657 �rms, 32524 �rm-years, 241 failures
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Table V
Forecast Accuracy with Zmijewski's Variables

Table V presents a comparison of the out-of-sample accuracy of various bankruptcy
models and the ratio of net income to total assets (NI/TA). All of the models use the
independent variables identi�ed by Zmijewski (1984), and all of the models are estimated
with data available between 1962 and 1983. Parameter estimates calculated with 1983 data
are combined with annual data between 1984 and 1992 to forecast bankruptcies occurring
between 1984 and 1992. All data, including net income to total assets, are lagged by at
least six months.

Probability Rankings versus Actual Bankruptcies
Percent Classi�ed out of 111 Possible

Decile Zmijewski New Logit Hazard NI/TA

1 54.1 55.9 55.0 56.7
2 19.8 17.1 15.3 16.2
3 8.1 7.2 10.8 8.1
4 4.5 6.3 8.1 1.8
5 5.4 6.3 0.9 6.3

6-10 8.1 7.2 9.9 10.9
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Table VI
Forecasting Bankruptcy with Market-Driven Variables

Table VI presents parameter estimates for two hazard models that forecast bankruptcy
with a new set of market-driven variables. Each �rm-year in the sample, from 1962 to
1992, is included in these models.

Panel A: Market Variables Only

Variable Coe�cient �2 P-Value

Intercept -12.027 39.27 0.000
Relative Size -0.503 8.06 0.005
rit�1 � rmt�1 -2.072 11.14 0.001
Sigma 9.834 11.03 0.001

2894 �rms, 33621 �rm-years, 291 failures

Panel B: Market and Accounting Variables

Variable Coe�cient �2 P-Value

Intercept -13.303 30.79 0.000
NI/TA -1.982 0.88 0.348
TL/TA 3.593 6.90 0.009
Relative Size -0.467 5.24 0.022
rit�1 � rmt�1 -1.809 6.52 0.011
Sigma 5.791 2.47 0.116

2497 �rms, 28664 �rm-years, 239 failures
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Table VII
Forecast Accuracy with Market-Driven Variables

Table VII presents a comparison of the out-of-sample accuracy of the bankruptcy models
that contain market-driven variables. All of the models are estimated with data available
between 1962 and 1983. Parameter estimates calculated with 1983 data are combined with
annual data between 1984 and 1992 to forecast bankruptcies occurring between 1984 and
1992.

Probability Rankings versus Actual Bankruptcies

Decile Market Acct. and Market

1 69.0 75.0
2 10.6 12.5
3 7.8 6.3
4 5.0 1.8
5 2.8 0.9

6-10 4.8 3.5
Possible 142 112
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